
Jigsaw 5C

1. [From Past Exam] [Week 4 Slides 25-41] Consider the principal values for the following ^{13}C chemical shift anisotropy (CSA) tensors:

(i) $\delta_{11} = \delta_{22} = \delta_{33} = 20 \text{ ppm}$
 (ii) $\delta_{11} = 20 \text{ ppm}, \delta_{22} = 15 \text{ ppm}, \delta_{33} = 0 \text{ ppm}$

Sketch the powder pattern of the ^{13}C spectra for both static and Magic Angle Spinning (MAS) conditions for each CSA tensor.

2/2

2. [Week 4 Slides 43-44] What is the main difference, in terms of molecular dynamics, between a liquid and a solid sample?

2/2

In liquids, molecules exhibit rapid isotropic motion.

In solids, molecular motion is restricted. ...but there is still tumbling while spinning but rotational molecular motion is much lower than $1/\Omega$

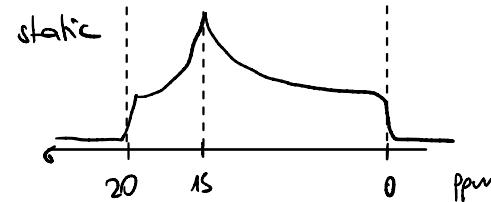
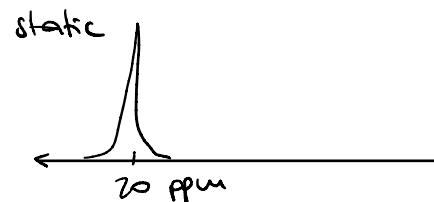
3. [From Past Exam] [Hore Section 3.3] The ^{93}Nb spectrum of $[\text{NbOF}_4]^-$ is a quintet. The ^{19}F spectrum has ten equally spaced lines with the same intensity. What is the nuclear spin of ^{93}Nb ?

2/2

For a nucleus of spin I , the number of lines is given by $2I + 1$.

$\Rightarrow 2I + 1 = 10 \Leftrightarrow I = 4.5$, so the nuclear spin of ^{93}Nb is 4.5.

To be more general, for a spin S , will find $2In+1$ lines due to coupling with neighbour with spin I ; remember that n is the number of neighbours! (in this case it is 1, true)



Jigsaw 5C

1. [From Past Exam] [Week 4 Slides 25-41] Consider the principal values for the following ^{13}C chemical shift anisotropy (CSA) tensors:

(i) $\delta_{11} = \delta_{22} = \delta_{33} = 20 \text{ ppm}$
 (ii) $\delta_{11} = 20 \text{ ppm}, \delta_{22} = 15 \text{ ppm}, \delta_{33} = 0 \text{ ppm}$

2/2

Sketch the powder pattern of the ^{13}C spectra for both static and Magic Angle Spinning (MAS) conditions for each CSA tensor.

$$\delta_{iso} = \frac{\delta_{11} + \delta_{22} + \delta_{33}}{3}$$

2. [Week 4 Slides 43-44] What is the main difference, in terms of molecular dynamics, between a liquid and a solid sample?

2/2

In liquid we have more tumbling motion which average the three principal components of the chemical shift tensor to the same value and thus a single peak with shift δ_{iso} (isotropic) is observed.

In solid there is no tumbling motion, therefore each crystallite appears at a different shift depending on its orientation relative to the magnetic field. There is still tumbling while spinning but rotational molecular motion is much lower than $1/\Omega$

3. [From Past Exam] [Hore Section 3.3] The ^{93}Nb spectrum of $[\text{NbOF}_4]^-$ is a quintet. The ^{19}F spectrum has ten equally spaced lines with the same intensity. What is the nuclear spin of ^{93}Nb ?

2/2

$$\text{Nb of lines} = \text{multiplicity}$$

Spectrum ^{93}Nb :

Since the complex $[\text{NbOF}_4]^-$ is a quintet and we have 4^{19}F then the spin of ^{13}F is $\frac{1}{2}$.

Spectrum ^{19}F :

we have one signal with multiplicity ten.
 The multiplicity is $2I + 1$, with I the nuclear spin.

$$\text{So: } 10 = 2I_{^{93}\text{Nb}} + 1 \Rightarrow I_{^{93}\text{Nb}} = \frac{9}{2}$$